If it's not what You are looking for type in the equation solver your own equation and let us solve it.
76b^2-19=0
a = 76; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·76·(-19)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-76}{2*76}=\frac{-76}{152} =-1/2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+76}{2*76}=\frac{76}{152} =1/2 $
| 3y+37=8+7y | | 3/4*x+10=16 | | 1.4-2.3s=2.1-1.3s | | 0.45x-1.5=7.5 | | 11=w/3-14 | | 3x-(1x+4)=1x-6 | | 2=w−18 | | w/4+13=42 | | 9+3(1c+2)=2c+5 | | 2w-4=1w+10 | | 4x+2/7+2=15x+29/28 | | 1410=160+60b | | 2x-4=12+3x | | 1/2h-1=3/5 | | 3.1x+4.2=2.1x-8.4 | | 5/4x-x/3=11/2 | | 1/3-1/9y=8/9 | | 5/4-x/3=11/2 | | 0.45x+0.05(8-x)=0.10(-44) | | -4(6-x)+8=6-6(x+2) | | x⁴-(x+1)⁴=175 | | 160+60b=1410 | | 16w+3-w=51 | | v/4=8/13 | | 6x-x=x+8x | | -17w+-7w=10 | | 4x(3×-8)=90 | | 40=120-10q | | 40=15+5q | | y=-2000(15)+30000 | | -6x-(9-1x)=5-4x | | 40=120-q |